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A theoretical study of multicomponent chromatography is here presented in which the system is considered
to be one-dimensional, isothermal, locally at equilibrium and to have negligible diffusion effects. The dis-
cussion starts with constant initial and entry conditions and goes on to stepwise constant data with an
arbitrary number of discontinuities. The Langmuir adsorption isotherm is perfectly fitted to the exposition
of the mathematical theory of quasilinear equations for it leads to explicit forms for the Riemann in-
variants and characteristic parameters. This paper develops the theory of simple waves and of shock waves
on an independent basis and illustrates this theory by the construction of solutions and the analysis of the
interaction of waves. It is shown incidentally that the entropy change across a shock is consistent with the
second law of thermodynamics. The separation of solutes is discussed and brief consideration is given to
the problems associated with non-uniform geometry and non-isothermal adsorption.

—
NI
olm
~ =
kO
= O
=u

PHILOSOPHICAL
TRANSACTIONS
OF

Vol. 267. A. 1182. (Price £1; U.S. $2.60) 28 [Published 30 October 1970

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. STOR ®
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

. \
_SE )

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

420 HYUN-KU RHEE, R. ARIS AND N. R. AMUNDSON

INTRODUCTORY REMARKS AND NOTATION

The chromatographic process has come into a considerable prominence during the last half
century as an analytical device, and more recently important industrial operations have used the
technique or one of its variants. All such processes have in common the feature that a fluid phase
containing one or more adsorbable components flows through a fixed bed containing an adsorbent.

The theoretical study of multicomponent chromatography has been the subject of many
papers. The first mathematical description was presented by Wilson (1940) who, however, over-
looked the dependence of the concentration of one component upon the others. Several observa-
tions, qualitatively correct, were made by De Vault (1943). Later, Walter (1945) considered the
formation of chromatograms, assuming a chemical equilibrium between adsorbed materials
and dissolved ones, and obtained explicit solutions. Glueckauf (1946, 1949) introduced Lang-
muir isotherms to analyse two and three solute problems rigorously, though his treatment did not
bring out the connexion with the classical theory of quasilinear equations. An independent
study was carried out by Sillen (1950) who presented analogous results by using the so-called
‘¢r-condition’ that holds for constant initial and entry conditions. Bayle & Klinkenberg (1954)
presented the mathematical formulation of multicomponent systems as well as a critical review of
the previous theory. These authors also claimed that the experimental results were not in conflict
with the relation between the coexisting concentrations.

Recently, a theoretical analysis of multicomponent ion exchange in fixed beds was presented
by Klein, Tondeur & Vermeulen (1967). Tondeur & Klein (1967) also extended the approach
originated by Walter (1945) to multicomponent systems. Although these authors were successful
to some extent with mass-action-type isotherms, several parts seem somewhat intuitive and
empirical. Moreover, their discussion is confined to some special cases and thus may not be
coordinated adequately to the general approach. Helfferich (1967, 1968)1 considered similar
problems and achieved a further advance by employing the so-called /-transformation.

In this paper we wish to develop a systematic and rigorous theory of multicomponent
chromatography with an ideal column. The term ‘ideal’, as used in this problem, connotes the
following conditions:

1. The system is one-dimensional in the direction of flow with uniform cross-sectional area.

2. The volumetric flow rate and the void fraction of the bed are constant.

3. Effects of diffusion are negligible compared with the convective transport, and there is no
channelling.

4. Local equilibrium is established between two phases everywhere at any time.

5. The process is isothermal and isochoric.

Such a theory, since only convective transport is important, is based on the mathematical
theory of quasilinear systems of partial differential equations of first order. The mathematical
model has also attracted the interest of many mathematicians who have elucidated the general
features of such conservation equations. Construction of solutions has been discussed through
finite difference schemes (Lax 1957; Oleinik 1957; Glimm 1965). A numerical scheme was first
developed by Courant, Isaacson & Rees (1952) and has been refined by various authors (cf.
Jeffrey & Taniuti 1964). By assuming the existence of generalized Riemann invariants, Lax
(1957) was able to generalize the simple wave theory and also able to develop a general theory of
discontinuities. This, however, is subject to a severe restriction because, for a system of more than

T The present work had been completed when we learned of Hellferich’s discussions, but little overlap is observed.
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two equations, a Riemann invariant of a type strictly analogous to the one for a system of two
equations cannot exist in general ( Jeffery & Taniuti 1964; Glimm 1965).

The present approach is restricted to Riemann’s problem in which the boundary data are con-
stant, for this is a sufficient condition for the existence of Riemann invariants. The first section is
concerned with the derivation of the fundamental differential equation that can be used with a
general isotherm, while in the second section the isotherms of Langmuir type are introduced.
These have been proved to be an adequate description of many multicomponent systems and lead
to explicit formulae.

The three sections following establish the basic theory. First the generalized Riemann invari-
ants and characteristic parameters are generated by following an independent scheme and this is
followed by the theory of simple waves and of shock waves; this development is also shown to be
compatible with the one established by Lax (1957). In § 6 we examine the entropy change across
a shock to be assured that the second law of thermodynamics is satisfied.

The next section discusses in detail the construction of the solution in terms of simple waves
and shock waves. It gives physical meaning to some observations made for special cases, and
includes some numerical examples.

Although it originated from the class of Riemann’s problem, the theory finds its natural appli-
cation to the class of stepwise constant initial and entry value problems which are necessarily
involved with interactions between waves. In § 8 interactions are classified and in §9 analyses are
performed for every case of potential interest. Applications are illustrated by a typical example,
the so-called chromatographic cycle, which shows how different solute species are separated from
one another.

Finally, we search for possible extensions of the present approach and briefly discuss radial and
non-isothermal chromatography.

Notation

The following are the principal symbols used in this paper. Some of the ephemeral symbols
are not listed. Dimensions are given in terms of mass (M), length (L), time (t), temperature (T),
and amount of solute species (mol).

4,
A(z)  cross-sectional area (L3?)

Cy heat capacity per unit volume of fluid phase (ML-1t-2T-1)

ith solute species

Cs heat capacity per unit volume of solid phase (ML-1t-2T-1)
c® characteristic of the £th kind
¢ molar concentration of species 4; in fluid phase (mol L.-3)
M
D 1+ 3 K,¢;, dimensionless
i=1
d depth of cylindrical bed (L)
fi total molar concentration of species 4, in both phases (mol L—3)
G Gibbs free energy per unit volume (M L-1¢-2)

H enthalpy per unit volume (M L-1t~2)
H; molar enthalpy of species 4, in solid phase (M L2t~2mol-?)

hy molar enthalpy of species 4, in fluid phase (M L?t—2mol-?)
J (k)-Riemann invariant, dimensionless
K, Langmuir isotherm parameter (L3mol-?)

28-2
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422 HYUN-KU RHEE, R. ARIS AND N. R. AMUNDSON
A molar flux of species 4; through a (k)-shock (mol L—3)
N limiting concentration of adsorbed solute (mol L—3)
n; molar concentration of adsorbed 4, (mol L—3)
Q volumetric flow rate (L3t?)
7 radial distance (L)
7, radius of central channel (L)
S entropy per unit volume (M L-1t~2T-1)
NG (k)-shock line
T temperature (T)
¢ time (t)
u interstitial velocity of fluid phase (Lt™?)
x dimensionless position variable
Z characteristic length of the system (L)
z distance in flow direction (L)
I path of the £th kind in @ (M) or 2(M)
Vi relative adsorptivity, dimensionless
AH;  heat of adsorption per mole of 4; (ML2t~2mol~?)
€ fractional void space of fixed bed, dimensionless
v dimensionless time variable along the 7-axis
0 fractional coverage of adsorption sites, dimensionless
Agy NK,(D — ¢;/J¥), dimensionless
)2 chemical potential of species 4; (M L2t=2mol )
3 dimensionless position variable along the x-axis
M, subspace, ®(M—1); ¢, =0
o characteristic direction in the physical plane, dimensionless
oS direction of shock propagation, dimensionless
T dimensionless time variable
@(M) M-dimensional concentration space
o, Kc;, dimensionless concentration of species 4; in fluid phase
Q(M) M-dimensional w-space
2} characteristic parameter, dimensionless
Brackets
[2] jump of the quantity @ across a discontinuity
{a;} collection of M elements of a; associated with the subscript
Superscripts
e entry condition
i initial condition
(k) kth kind
1 left-hand side of shock
° fixed
r right-hand side of shock
shock

* higher value
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Subscripts

4 i, &1, m Solute species in multicomponent systems
) kth kind

o number of solute species appearing in the system or equivalently the most adsorbable
species

° fixed

0 initial point

123 solute species 4,, 4,, 44
* lower value

1. FUNDAMENTAL DIFFERENTIAL EQUATION

Consider an ideal chromatographic column of void fraction ¢ through which a fluid mixture
containing M different solutes {4;} flows with linear velocity . Let ¢; represent the concentration
of the solute 4, in the fluid phase and #; its concentration in the solid phase, both being expressed
in moles per unit volume of their own phase. Then the material balance for each solute component
4;in a section between planes distant z and z + Az from the entrance to the bed over a time period
t to t+ At yields, in the limit, the following quasilinear system of M partial differential equations
of first order:

de;  Oofy
fi=ec;+(1—¢€)ny, (1.2)
Ny = Ny(C1yC9 +oes Cap) (1.3)

fori=1,2,..., M. Here x and 7 are the dimensionless independent variables defined as
¥ = z[Z,a dimensionless distance, (1.4)
T = eut/Z, a dimensionless time, (1.5)

respectively, and Z is the characteristic length of the column. In equation (1.8) the functions n,,
representing the equilibrium relationship between the adsorbed phase and the fluid phase, may be
regarded in general as continuous functions of {¢;} with as many derivatives as may be required.

According to the conventional mathematical theory, the system (1.1) is totally hyperbolic
if the matrix of coefficients f; ; has M real, distinct eigenvalues where

Jig = filoe; (5 =1,2,...,M). (1.6)
The formal solution of the equations first requires the determination of the M eigenvalues

Ay (characteristic directions in the (7, x)-plane) and the right eigenvectors 7, of the matrix. These
are all functions of {¢;} and lead to the generalized Riemann invariants J® by the solution of the

equation (Vo J®) 1y =0 (k=1,2,...,M), (1.7)

where V, denotes the gradient in the concentration space. It can be shown that there exist
precisely M — 1 independent Riemann invariants J® which, together with the eigenvalues A,
play the key role in the construction of solutions. In practice, however, the method is by no means
promising except for some special cases for which the eigenvalues can be obtained explicitly.
We shall therefore confine our discussion to a class of special, yet standard, initial and entry
value problems and follow an independent approach. Suppose the initial and entry data are


http://rsta.royalsocietypublishing.org/

)\
C

|

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

@ A

I §
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

424 HYUN-KU RHEE, R. ARIS AND N. R. AMUNDSON

specified by two different constant states of concentrations with a jump discontinuity at the

origin: {at T=0, ¢;=c¢ (aconstant) (1.8)
at x=0, ¢ =¢ (a constant)} '

fori=1,2,..., M and 0 (1.9)

for some 7. The superscripts i and e denote the initial and entry data, respectively. A problem of
this class is called a Riemann’s problem.

It has been proved that, ifit is unique, the solution of a Riemann’s problem is a function of x/7
only (Sillen 1950; Lax 1957). Let us suppose that the solution has been obtained for the Riemann’s
problem represented by equations (1.1), (1.8) and (1.9). If this is denoted by

o =cx/r) (=1,2,...,M), (1.10)
and J; is the inverse function of ¢;, so that
x(1 = Li(¢;) = Ij(e;) (4,5 =1,2,..., M),
there must be a system of relations:
¢;=¢(L(e;)) = gules) (65 =1,2,..., M). (L.11)
It then follows that there exists a one-parameter representation of the solution and that its image

in the M-dimensional concentration space lies on a single curve. We shall call such a curve a I'.
If along the curve I" we introduce the directional derivative

Dfs _ 3 Yidgs (1.12)

‘@(/‘i - ]§1 a()j dci ’

then the system (1.1) becomes

. +g{‘2i 0 (i=1,2..,M)
which can be rearranged in the form
S(1) -2, "
where w is a parameter running along the curve I'. Since o must be the same for every i, it follows
that Ih_ 2 _  _Zu (1.14)
Do, Dey, T Doy’

Equation (1.14) is the fundamental differential equation of the Riemann’s problem, the solution
of which generates the one-parameter family (1.11); i.e. the curve I"in the M-dimensional con-
centration space. It was given by Glueckauf (1946, 1949) for two solutes and by Bayle & Klinken
berg (1954) for many solutes.

Furthermore, equation (1.13) can be rearranged by employing the parameter w in the form

de de dey, .
‘fvl i (sz )~—+ +fLde =0 (121,2""9M)3
or briefly in matrix form (V. f—olI)de/dw = 0, (1.15)

where f or ¢ represents the vector-valued function of M elements { f;} or {¢;}, respectively. The con-
dition that there exists a non-trivial solution for d¢/dw entails

|V, f—olI| = 0. (1.16)
Consequently, o defined as in equation (1.13) is the same as the characteristic direction in the
physical plane of 7 and «.
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2. LANGMUIR ADSORPTION ISOTHERM

The equilibrium relation n; which is usually called the adsorption isotherm is, in general, a
complicated nonlinear function of {¢;} in which mutual influences among different solutes are
taken into account. Since the ideal localized monolayer model was introduced by Langmuir
(1916), the Langmuir relation has been extensively employed not only for single solute systems
but also for multiple solutes (see, for example, Wilson 1940, and particularly Glueckauf 1946,
1949). A rigorous discussion was given by De Boer (1953) and experimental evidence of its
validity has been presented (see, for example, Shen & Smith 19685).

We shall assume the validity of the Langmuir relation for multicomponent systems and
introduce the appropriate form for equation (1.3); i.e. for each components 4; we have

NK;c,
1+ X Kjey
L

J

n; (i=1,2,..,M).

(2.1)

Here K; is the reciprocal value of ¢; when half the sites are occupied by molecules of 4; and the
other halfare vacant. The value of K; may be determined experimentally and is strongly depend-

ent upon the temperature 7% K;= K2 T} c=AHiRT, (2.2)

where AH, is the heat of adsorption per mole of 4;. N, representing the saturation value of n;,
is defined as the maximum number of moles of solutes that can be adsorbed per unit volume of
adsorbent. It is interesting to notice that N is a constant intrinsic to the adsorbent itself and K,
is a constant characteristic of the corresponding system of a single solute 4,.

DeVault (1943), on a completely independent basis, predicted various properties for adsorp-
tion isotherms represented by the first- and second-order derivatives. The Langmuir relation (2.1)
satisfies all of those properties and thus represents what is termed a ‘favourable equilibrium’.

For convenience, we shall further assume that the solute components are arranged in such a

way that Ky <Ky<Ky<...<Ky_, <Ky (2.3)
This is equivalent to numbering the components in the order of the adsorptivity from the smallest
to the largest since the relative adsorptivity may be defined as

_ mfey _&

’)/ir B nl‘/cl‘ B ‘KI‘

(G=1,2.., M), (2.4)

where the subscript r denotes the reference species. For the Langmuir isotherm the relative ad-
sorbtivities are independent of concentrations.

The Langmuir relation carries an underlying assumption that the solvent behaves as an inert
component. If the solvent has a non-zero adsorptivity, but one which is smaller than any of the
solutes, the Langmuir relation can be reduced to the form which excludes the solvent (equation
(2.1)) by appropriately modifying the values of N and K; (Rhee 1968). In particular, constant-
separation-factor equilibrium relations introduced by Tondeur & Klein (1967) can be rewritten
in the form of equation (2.1) excluding the least adsorbable component. An immediate conse-
quence is that the least adsorbable component (i.e. the solvent almost invariably) is consistently
passive in the process of exchange and thus may be treated with the corresponding modifications
as if it were an inert component within the framework of the present study.
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426 HYUN-KU RHEE, R. ARIS AND N. R. AMUNDSON

3. RIEMANN INVARIANTS AND CHARACTERISTIC PARAMETERS

In the light of the form of the Langmuir isotherm, equation (2.1), we shall introduce the
following dimensionless variables:

¢7,=K7,6',L (l= 1,2,‘..,M) (3.1)
M
and D=1+73% ¢, (3.2)
i=1
It then follows from equation (1.11) that ¢; as well as n, may be regarded as a function of D alone;
e $i=9D) (i=12,..,M), (3.3)
and n;= N, (D)D (i=1,2,...,M). (3.4)

We further remark that the total coverage @ of adsorption sites can be expressed in terms of
the parameter D; i.e. from equation (3.4)

M
@= Y n/N=1-1/D. (3.5)
1=1

Hence, the coverage @ varies in the same direction as the parameter D.
Denoting differentiation with D as the independent variable along the I" by d/dD, we can re-
write the fundamental differential equation (1.14) in the form

dn,/dD dng/dD dny,/dD

R gg0ap = Kedqgjap = - = Ru gy, jdp- (3.6)
Substituting equation (3.4), differentiating once more with respect to D and rearranging, we
obtain d’p, a*p, &gy ¥ g,
dD? _ dD? o dD? _ ispdDe 47
=ACaen e i e
Ky \dD ] Ky, \dD Ky ¢y \ dD i=1 Ky p \dD
Since it follows from equation (3.2) that
M2,
Zdpe =%
any solution to equation (3.7) must satisfy either
Mo d¢i)2
LY ') 3.8
2 Kid, (dD (3.8)
d2g; .
or d5¢2@=0 t=12,...,.M). (3.9)

Equation (3.8), however, cannot have any physical meaning since it would require at least one
of the ¢, to be negative. Consequently, it is from equation (3.9) that the physically relevant
solution may be determined. Direct integration of equation (3.9) gives
pi—p; =J;(D-D°) (i=1,2,..., M), (3.10)
in which the superscript o denotes the fixed state of concentrations and J; is the integration con-
stant to be determined. Adding the M equations in the system (3.10) together, we find that
M

2 Ji=1. (3.11)

P=
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The system (3.10), being a one-parameter form of the solution, represents a straight line passing
through the fixed point {¢;} in the M-dimensional concentration space, @(M). This straight line is
the I"and has a direction given by the invariant set {J;}.

We now substitute equation (3.10) back into the original differential equation (3.6) to obtain,
after rearrangement, the equation

Ky(N=myfJy) = Ky(N=nylJ) = . = Kyy(N=nyylToy) = 0, (3.12)
- K.,;ni .
whence Jl——m (Z— l, 2,...,M).
Here w is a new parametert which can be determined, for a given state of concentrations, by
solving the following equation M Ko
e A S (3.13)
i=1 NKZ — W

Equation (3.13) is an Mth order algebraic equation for w and it can be shown that there exist
M real, distinct, positive roots which can be arranged as

0 < oy < NK; < 0 < NK; < 0.0y < NKy—y > 0gp < NKy,. (3.14)

Consequently, there exist M different sets of J, to each of which there correspondsa different I'.
We shall denote the kth one as I'® and the corresponding invariant set as {J{¥}, where

T = =219 M), (3.15)

It should be pointed out that J; so defined corresponds to the generalized Riemann invariant
(Lax 1957), {J{¥} being the (k¥)-Riemann invariants.
From equations (3.14) and (3.15), one can show that

0<JP < IR < ... <UD < Jin, (3.16)

and it is also observed that the sign of each Riemann invariant J is fixed as shown in table 1.

TABLE 1. S1cN OF RIEMANN INVARIANTS, J{®
J® Jy VA
Jw + +
J@ —_ +
J® - -
Ja — —

JM—z JM—1

R
++ A+t

Y

JOI-2) ~ ~
J@r-n - - - -
Jon _ _ _ _

|
I
I ot +++
I+ 4

ettt S

Rearranging equation (3.12), we obtain
Agy = o@D = NK;(D - ¢,/JP), (3.17)

and it can be shown from equation (3.10) that A, being independent of the choice of 7, remains
invariant along a I'®, Furthermore, it follows from equation (3.16) that

0< /1(1) < /1(2) <...< A(M—l) < A(M)' (3.18)
We further observe that equation (3.13) is a one-to-one, continuous mapping of the

1 It will turn out later that o is the characteristic parameter (cf. equation (3.20)).

29 Vol. 267. A.
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concentration space @ (M) onto the w-space £2(M). It can be shown that the inverse mapping is
also continuous and given by

NK, 1
) M gy
¢, = (ZKz_l) 11 ﬁ)lél)____ (t=1,2,...,M). (3.19)
(3) =1 4 _q
VA K

J
Hence, the two spaces @(M) and (M) are homeomorphic with the homeomorphism given by
equations (3.13) and (3.19). In order to obtain the image of a I'® in (M), we take the equation

u K;n;

i§1 NK;—ogy 1 (m+h)

which, upon using equations (3.11) and (3.15) and rearranging, we can reduce to

(k)

M :
(0 — Ogm) El VK, - oo (3.20)
Equation (3.20) implies that wy,, if m + £, remains unchanged along a I'® because wg) #+ ©y)
and {J¥} is invariant along a I'®, Since then only wy, varies along a I'®, its image in (M) lies
on a straight line parallel to the wg,-axis. Here we remark that the homeomorphism corresponds
to the /-transformation of Helfferich (1968). Incidentally, the w-coordinate system is very
similar to the characteristic coordinate system associated with a system of two equations
(Courant & Friedrichs 1948; Rhee 1968) and, in this sense, oy, will be called the generalized
characteristic parameter.
In the space £2(M), the physically relevant portion is finite and bounded as follows:

wg < NK, (2<k< M),} (3.21)

Consider next the (M — 1)-dimensional subspace 7,,: ¢,, = 0. It follows from equation (3.13)
that one of {wy)} must be equal to NK,, and hence, from equation (3.21), that @, = NK,,
or Wy, = NK,,. Therefore, the image of the subspace m, in £2(M) consists of two planes
0 = NK,, and o, 1) = NK,,. The only exception is the subspace 7, whose image is a single
plane w; = NKj;. The origin of @ (M) represents the pure state {0} for which equation (3.13)
generates the M roots {NK,}. The image of the pure state in (M) is then given by the point
wg = NK;, k= 1,2,...,M. (Figure 3, whose main bearing is in a later connexion, illustrates
this incidentally by showing the region of £2(3) that corresponds to the positive octant of @(3)
and by indicating the point in £(3) corresponding to the origin of @(3).)

We summarize this in tables 2 and 3.

TABLE 2. CORRESPONDENCE BETWEEN @(M) anD 2(M)

space D(M) Q(M)
state {3 {om}
r straight and slanted straight and
parallel to axis
pure state {0} {NK;}
subspace, plane ¢, = 0 - two planes,
Mt P =0 Wy = NK,, and
Om+n = NKy,
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TABLE 3. PERTINENT PARAMETERS ALONG A [

parameter m=k m+k
Oy variable invariant
Ay invariant variable
{Jm} invariant variable

4, CHARACTERISTICS AND SIMPLE WAVES

In §1 we observed that equation (1.13) defines the characteristic direction and it is now obvious
that there exist M different directions. We shall denote the kth characteristic as C®, where its

direction is given by oy = (d7/dx) 4, = €+ (1—6) wgy/D (4.1)
= e+ (1—¢€) Agy/ D2 (4.2)

Applying equation (3.14) or (3.18), we find that
C< O <O < ... <OGr—1) < Oy (4.3)

Note that e corresponds to the reciprocal of the fluid velocity while o) represents the reciprocal
of the propagation speed of a disturbance. (The term ‘disturbance’ will be used to represent a
discontinuity in some derivatives.)

It is well known that a region of constant state in the physical plane is bounded by C-charac-
teristics, necessarily straight lines because o, remains constant for every £ (Lax 1957). Since a
constant state has a point image in @ (M), it follows from §1 that the solution adjacent to a
constant state must have its image along a I" emanating from the point image and thus one set of
Riemann invariants is constant. This leads us to

THEOREM 4.1. If # is part of the boundary of a constant state and is a C%®), then all (k)-Riemann
invariants on the other side of 4 are constant.

Proof. Suppose the (/)-Riemann invariants remain the same across # where { = £. Since then
Ag is constant and wg is held constant along a C? (cf. equation (4.1)), it follows from equation
(8.17) that D remains constant along a C®and so every ¢, is also constant. In figure 1 consider a
point P on 4 and draw the C? passing the point P. Since o¢) % o, and the C9, carrying constant
values of {¢;}, remains straight across %, we encounter a contradiction that % is not the boundary.

Consequently, we must have / = £ and this establishes the theorem.

7}
Z:cf

constant
state

0 ' X
Ficure 1. Solution adjacent to-a constant state.

20-2
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We may now introduce the following definition of a simple wave.

DEerintTION (Lax 1957). A continuous solution in a region of the physical plane for which all
(k)-Riemann invariants are constant is called a (£)-simple wave.

According to this definition, theorem 1 may be rephrased as follows:

Corollary. The solution adjacent to a constant state bounded by a C% is a (k)-simple wave and
has its image along the I'® issuing from the point image of the constant state.

In a (£)-simple wave region, there exists a one-parameter family of solutions
bim i = JO(D=D) (i = 1,2,..., M). (4.4)

Also oy, is a monotone function of D because A, is constant. Furthermore, every C® is straight,
since the condition that v, is held constant entails the fact that D and so also the ¢, remain con-
stant along it. These arguments may be expressed in the form of

TuEOREM 4.2, A (k)-simple wave region is covered by a family of straight C®,
In a (k)-simple wave, it is required that

dogy  dogyoD
ax ~dD ox = (4.5)

for otherwise the characteristic C® would overlap. On the other hand, from equations (4.2)

and (4.4), we have dog

<0, (4.6)

do; L [<0 (< k),}

a =i {>o (i > k). (4.7)
In addition, we observe that wgD = Agy = constant. (4.8)

Consequently, we have

TuroreMm 4.3. In a (k)-simple wave, D and ¢, for ¢ > k increase in the x-direction while
wgy and ¢, for 7 < £ decrease in the x-direction.

Corollary. In a (k)-simple wave, the coverage @ increases in the x-direction.

5. SHOCK WAVES

If it happens that 04

oD '
G 0 or o<, (5.1)
then the characteristics would overlap and the solution could not be determined uniquely. This
can be resolved by allowing the discontinuities in the solution itself.

At a discontinuity equation (1.1) is no longer valid and must be replaced by conservation
equations expressing the fact that the discontinuity propagates with such a speed that there is no
accumulation of material or energy at the discontinuity. Therefore, we have

8 .
oo () = H (5.2)
dx [¢:]

for any 7, where o8 is the reciprocal of the propagation speed of the discontinuity and the symbol

[ ] denotes the jump of the quantity enclosed across the discontinuity. Equation (5.2) is the
generalized Rankine-Hugoniot relation.
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Since adsorption equilibrium is established, o is the same for all ¢ and therefore the following
compatibility condition must be satisfied:

(A _ LAl _ [/ (5.3)

lead el 7 [eadd
Equations (5.2) and (5.3) together form a system of M algebraic equations. Hence, given the
state on one side, the state on the other side can be determined if one of the concentrations or the
value of o8 is known.

These conditions, however, are not sufficient to determine the physically relevant solution
since an ambiguity still exists concerning the direction of jumps. More generally, it is well known
that the solution of the system (1.1), defined in the sense of weak solutions (Lax 1954), is not
uniquely determined by the data, equation (1.8), until we introduce an additional condition
that regulates the direction of any jump discontinuities. Such a condition, which is usually called
the ‘entropy’ condition, is obtained not from the conservation law for a discontinuity but
from arguments based on the conservation law for a continuous field.

For the present problem the ‘entropy’ condition can be deduced directly from equation (5.1)
which originated from equation (1.1):

TueoreM 5.1 (‘Entropy’ condition). Across a discontinuity{ the parameter D and so the
coverage @ decrease from the left-hand side to the right.

In the limit as a discontinuity becomes very weak, the compatibility condition (5.3) is reduced
to the fundamental differential equation (1.14). This implies that the image of a discontinuity is
tangent to a I" at each end and thus there may exist M different kinds. Recalling the fact that
I’s are straight, we assert that the image of a discontinuity lies on a I" and so equation (5.3) is an
integral of equation (1.14). Along a I'®, for instance, we have

Ki[e)| TP = Kig][JP (0 +),

o, K;J® o
and gﬁ == @ZDJZ = Kf-ﬁ@f} (Z #]).

(5.4)

Integrating the latter relation along the I'®, we obtain

KLAIE = KLHITE @ +))
and comparing with the former, we find that equation (5.3) is satisfied. This is true for any &
and hence there exist M different solutions of equation (5.3). It can be further shown that there
are only M and no more solutions (Rhee 1968). Consequently there follows

TueorEM 5.2. A discohtinuity necessarily has its image along a I" and there are M different
kinds.

Consider a discontinuity with image on a I'®, Since then the (£)-Riemann invariants remain
constant across it, the states on both sides can be connected by a one-parameter family

[¢$] = Jék) [D] (l =12,.., M) (5.5)
and the propagation direction is given by
5 = (Cﬁ)s — ¢+ (1—6) A/ DD" (5.6)
(k) dx/) k) ) .

+ The characteristic field o, being non-degenerate, every discontinuity may be identified with a shock. This
becomes obvious in the later part.
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where a superscript ] or r denotes the left- or right-hand side of the discontinuity, respectively, and
Ay = who D1 = NE, (D'~ ¢L1J)

= Wl D* = NK (D" — §5/J). (5.7)

Suppose that two discontinuities of different kinds are adjacent to each other: this is shown in

figure 2 as a diagram of D and x for a fixed 7. Applying equations (5.6) and (5.7) to each discon-

tinuity, one can show that
NK ¢1‘ ¢l
Ol — O = (1—¢€) Dok { Dergc)_ Dl Jl;c+1)} >0,

because Ji > 0 and J#+D < 0. This is true for any £ and thus

€< 0 < 0P < ...< 0y < T (5.8)
D
Dl
=>1/0%.
DO
aeells

| DT

0 T

Ficure 2. Two discontinuities of different kinds.

Since D! > D* from the ‘entropy’ condition, it follows that
Tty < Ty < Ol (5.9)

For completeness, we also compare 0%, with ot;, ;) as well as 0%, _;) to obtain, by applying equations

5.6) and (5.7), the inequalit
(5.6) (5:7), d Y Olern > O > Oin- (5.10)

According to Lax (1957), equations (5.9) and (5.10) are precisely the inequalities characterizing
shocks and thus we have

TueoreuM 5.3. Every discontinuity appearing in this study is a shock.

A shock, if its image lies on a I'®, is called a (£)-shock and its propagation path a (£)-shock
line $®, The concentration field along an §® is called a (£)-shock wave.

6. ENTROPY CHANGE ACROSS A SHOCK

In this section we shall prove that the ‘entropy’ condition given by theorem 5.1 does not
violate the second law of thermodynamics.

Consider a finite interval of the column, ¢!(7) < & < a*(7), thatcontainsa (£)-shock at the time 7.
Denoting the shock position by ¥ = x%(7), we remark that

dxs 1

717;—;?;’ (6.1)
de! _der 1 6.2
dr — dr € (6.2)
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for the fluid phase and de! dar

for the solid phase since it is stationary.
The equation of continuity for the species 4, is then given by

%f;rﬁ(x,T) dv=0 (i=1,2.,M) (6.4)

The integrand being discontinuous, equation (6.4) can be rewritten byr applying Reynold’s trans-
port theorem as follows: ' ‘

< of; dar .\ dal dxs
[ Gan | o) SE it n) ) - (oo + 0,1 =filxo =0, M) 5 =0,
We then introduce equations (1.2), (6.1), (6.2) and (6.3) and take the limit as a* —a' - 0 to obtain

o 5 =) — (=) = 0

ol \DD*
1—e)( 4 .
or M = g;f,;‘){plgr ci-—ni} = constant - (¢ = 1,2,..., M), (6.5)

where ¥ represents the molar flux of 4, through a (k)-shock. Equation (6.5) is consistent with
the previous result; cf. equations (5.5) and (5.7).
Now applying equation (5.7), one can show that

a _ _(1—¢) ning (>0 (i<k),}
M= =T NI <0 (i > ), (6:6)

This equation, when combined with the ‘ entropy’ condition, implies that at a (k)-shock the molar
flux of 4; is in the direction of increasing coverage @ if i > £.
Since the process is isothermal, the entropy change across a (£)-shock can be expressed in the

form TISE = [HR-[6 (61
in which [ST! denotes the difference $!— St and '

H= %'11 {ec;h;+ (1—€) n; Hy}, (6.8)

M .
G = i§1 ,ulq,j;,; _ (6‘ 9)

where k; or H; is the molar enthalpy of 4, in the fluid or solid phase, respectively, and z is the
chemical potential of 4.
We note that /; and H; remain the same across a shock and thus we have

(H} = fim L% Hdx

at—ai—0 AT J &

1—¢) ¥ (4
=520 3 (G k- i )

which, upon applying equations (5.5) and (6.5), may be reduced to

(=) Agy X W |
[H]r - O-?k;) DiDr [D]r’i§1 ( AH’&) Ki ’ (6‘10)
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Where —AH/L = h’i—Hi > 0. (6.11)

Since J{® < 0 for ¢ < k while J{® > 0 for ¢ > k and it follows from equations (2.2) and (2.3) that
(—AH,) > (—AH,;) for i > j, there exists a lower bound of the summation:

Moy T gy % IE
Z (= i)T(i‘ > (—A k-:l)i;l*fq-

Furthermore, each term J{/K, is invariant along the I"® (the image of shock) which intersects
at one end the subspace wgy = NK;, in the space 2(M). At the point of intersection {¢;: ¢, = 0},
we have

K,n; .
J%k) [ 2 SN i+ k ,
NK—-Ky ¢+
JF =1- 3 JP
4k ¢
M J(.k) 1 no K'
and th Lo ) '(I—A”)
! ® i§1 K; Ky i§k N(K;—Ky) K,
1 ng 1
= — p— 2} = . . 2
Kk<l P ) K. 0° " (6.12)
Hence [H]} > o. (6.13)

On the other hand, the chemical potential x; jumps from one side of the (£)-shock to the other,
whereas it assumes the same value on both phases because of the equilibrium. Therefore, we have

CL = tim 3 (“ Gdx

a—ai—»0 A7 J or

1—¢) M (4
= ( Er ) i§1 { Dl%)f [s6:]— [ﬂini]l'}

M
= 3 MP[p]h (6.14)
i=1

To obtain the last form equation (6.5) has been used. Recalling the one-parameter family (5.5)
and equation (6.6), we observe that every term in the summation becomes negative and thus

[G]: < 0. (6.15)
Consequently, we obtain [S]L > 0. (6.16)

This implies that entropy increases in the direction of increasing total coverage @, and thus
the ‘entropy’ condition is consistent with the second law of thermodynamics.

7. CONSTRUCTION OF SOLUTION

We will be concerned here with how to combine the results obtained in the previous sections
to construct the solution of a Riemann’s problem. It is clear that the initial discontinuity has its
range of influence centred at the origin in the physical plane and this region is our main
interest because outside we simply have two constant states corresponding to the initial and entry
data, respectively. It is, therefore, convenient to construct the wave solution in the physical
plane, from which the concentration profile can be established without difficulty.

Given the initial and entry data {¢},} and {¢5,}, we begin with the homeomorphism (3.13) to
determine the sets {w{)} and {w§,}, which are the images of data in the space Q(M).
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(a) Exustence and uniqueness

In Q(M) the images of the initial and entry data would lie on two different points, I and E
respectively, and thus the image of a solution is given by a continuous path that connects I and E
by a set of I”s. A I'® being straight and parallel to the wg-axis, such a path always exists and
hence a solution.

) “(3)
b3

\¢ -

2

@(2)
6)] 2(3)

Ficure 3. Schematic portraits of a solution in the spaces @(3) and 2 (8).

Before making any general observations the situation for M = 3, as illustrated in ﬁgixre 3,
may serve to show the matter more clearly. The points I and E represent the initial and entry
conditions and if we pass from I, the state when 7 = 0, to E, the state when x = 0, we shall be
moving counterclockwise in the (x,7)-plane. Now the inequalities on the ogyand ofy, show that
we must use a sequence of I'®’s in the order £ = 1, 2, 3 in passing from I to E. In 2(3) there is
clearly a unique path IABE consisting of segments of lines parallel to the axes of vy, W),
in that order, and this path has an image in @(3). If the coverage increases in going from I to A
then it must be a (1)-shock since from theorem 5.1 D decreases from left to right of the shock
(i.e. it increases as we move counterclockwise over the physical plane). On the other hand, if the
coverage decreases then by theorem 4.2 we have a (1)-simple wave. Thus for each segment of
the path we have a simple test of whether it represents a continuous or discontinuous transition
between states.

In the general situation, the path may consist of many segments of I"s of various kinds. To a
I'®™ there corresponds either a (k)-simple wave centred at the origin, which is represented by a
family of straight C®, or a (k)-shock wave, which is given by a straight (k)-shock line $®, de-
pending upon the parameter D. It then follows from the inequalities (4.3), (5.8), (5.9), and (5.10)
that the path must be composed of at most M segments each of which is part of a I" of a distinct
kind and which are arranged in the order of ascending (k) as one passes from I to E. Clearly
such a path always exists and is unique. This establishes the existence of a unique solution.

The general situation is shown in figure 4, where it is seen that there is a succession of waves

30 Vol. 267. A.
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which are either shocks (i.e. degenerate waves such as S® and S®) or centred simple waves (as
C®, C&-D WD) separating regions of constant state. These states may be denoted by a bracketed
index, so that ¢{¥ is the dimensionless concentration of the mth species between the (£)-and (£ +1)-
wave regions. Thus ¢},, the initial concentration, corresponds to ¢{) and ¢j,, the entry concentra-
tion to ), The angle between the boundaries of the initial and entry states is the range of in-

fluence of the discontinuity at the origin.
c®)

7

0

F1GURE 4. Schematic portrait of a solution in the physical plane, showing regions of constant state separated either
by shock waves § or by centred simple waves C. , Characteristic; ——, shock line.

(b) Constant states
Since wy, varies only across a (k)-wave, be it a shock wave or a simple wave, the £th constant
state must correspond to the vortex
(@1, Oys + -5 Okys Olresys -5 Wenry) (7.1)
of the path between I and E in (). The inverse mapping given by equation (3.19) may then

be used to determine the concentrations ¢{¥ in the kth constant state.
Another approach is motivated by the recurrence formulae

Ao = by DD = 0y DO (k = 1,2, ..., M) (7.2)
and P=D _ JE DE=D = k) _ J&) Dk
P i k=1,2,...M
for 1 —‘NKm/w:k) - 1 —NKm/C()?k) ( =y 4y ey )’ (7'3)
k)i, M e,
From these we obtain D® = D11] 9){%) =De ] gij—) (7.4)
7=1 () i=k+10()
.k 1-NK, | M1~ NK,,|w
and ) — Al STl L ge ke ek € R ¢V | 2, .., M 7.5
O’ = I LT NE oty — O IL ToNK, Jug, ™= B2 M) (7.5)

fork=1,2,..., M.
(¢) Wave solutions
Once every constant state is determined, it is straightforward to construct the wave solutions.
For the (k)-wave, where 1 < k£ < M, we proceed as follows:
(i) If 0fy > wix), we apply equation (4.2)
o =€+ (1—¢) Ag/D?* for D® < D < D#-D (7.6)
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with Ayy = 0, D® and draw as many straight C®s as desired from the origin to generate the
centered (k)-simple wave. The constant values of {¢,} along each C® are determined from

equation (4.4): G = O —J®(D DB (m =1,2,..., M) (7.7)

for D® < D < D& with J® = K, 1®|(NK,, — ).
(i) If ) < wixy, we apply equation (5.6) in the form of

O'?k) = €+ (l — 6) (l)i(k)/D(k) (7.8)

and draw a straight S® from the origin to give the (k)-shock wave.
(ii) If oy = wix), then by equation (7.2) we must have

D = D= (7.9)

and this implies that the (£)-wave does not appear in the solution. For such a degenerate case,
the image in Q2(AM) will not contain a segment of I'®,

(d) Special cases

If one or more of the solute species are absent from the initial bed or from the entry mixture,
it is to be expected that some interesting features may appear. These are certainly of potential
interest in the practice of chromatography and thus worth examining in detail.

In §3 welearned that the subspace,,: ¢,, = 0 consists of two planes w,,, = NK,, and v, )= NK,,
in the space 2(M); the case m = M is exceptional and 7, is the plane wgyy = NK,; in Q(M).
This implies that 7, has connexions with the outside, 2(M) —m,,, only through I'™ or I'tm+D,
Furthermore, it is observed that v, increases along a I'™ toward m,, while w,,; decreases
along a '™V towards 7,,. When associated with theorems 4.3 and 5.1, these arguments lead
us to

THEOREM 7.1.

(i) A particular species 4,, can be exhausted through an (m)-shock wave or an
(m+ 1)-simple wave.

(ii) A particular species 4,, can emerge through an (m)-simple wave or an (m + 1)-shock wave.

(iii) The species A;; can be exhausted through an (A)-shock wave and emerge through an
(M)-simple wave.

The last statement is obvious from the fact that 7, consists of a single plane wy,) = NK,,
in Q. It is not difficult to deduce from the theorem the following corollary:

Corollary

(i) A particular species 4,,, once it is exhausted, cannot appear again in the front.
(ii) At a particular position in the column, only one solute can vanish or emerge at one time.

Consider now the conventional adsorption process (formation of a chromatogram) for which
the initial bed is clean. The entry mixture contains M solute species and each species must vanish
somewhere in the column. It follows directly from theorem 7.1 that 4,, must be exhausted through
the (m)-shock wave for 1 < m < M. In other words, each species disappears successively in the
order of decreasing adsorptivity along the column. This fact was proved for an arbitrary adsorp-
tion isotherm by De Vault (1943). The physical plane portrait is shown for M = 3 in figure 5 (a).

For the conventional desorption process (development of a chromatogram) we have the pure

30-2
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solvent flowing into the column, whereas the initial bed is a uniform chromatogram of M
solute species. Therefore each species must emerge somewhere in the column. According to
theorem 7.1, 4,, must emerge through the (m)-simple wave for 1 < m < M and thus the physical
plane portrait would be as shown in figure 5 ().

T ' ’Tﬁ

)

N

0 () ¥ 0 (b)

Ficure 5. (a) The saturation of a column (M = 3). (b) The elution of a column (M = 3).
Another interesting example is produced by the alternating data; i.e.
PL,=0 if mis even}
and ¢S, =0 if misodd;

or vice versa. It is clear that, along the column, exhaustion of species 4,, alternates with emer-

(7.10)

gence of species 4, ;. According to theorem 7.1, however, 4,,_; may emerge through the (m)-
shock wave or be exhausted through the (m)-simple wave while in these two kinds of waves 4,,
is respectively exhausted or emerges. A number of different cases can occur depending upon the
data specified; thesc are suggested in the basic profile-patterns for M = 3 by Klein, Tondeur
& Vermeulen (1967). In any case, once the sets {»f,} and {w{s} are determined, construction of
a solution is fairly straightforward. Moreover, half of {wy)} are given by NK; where ¢; = 0
(cf. example 4 in the next subsection).

(¢) Numerical examples

The following examples will serve as good illustrations of application. Since each case was
considered previously, we shall present the solutions in the form of graphs with little further
discussion. All have in common the following parameter values:

€= 0.4,
N = 1.0 mole/litre of adsorbent.

Further information is given in the table that precedes each graph. The concentrations are given
in moles per litre of fluid phase and the units of K, are, of course, the reciprocal of concentration.

Example 1 (M = 3):

m 1 2 3
K, 5.0 7.5 10.0
ay 0.032 0.114 0.075
¢, 0.150 0.060 0.020
Ol 2.797 5.409 8.974
Dom> 2.445 6.667 9.586
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Figure 6 shows the sequence of waves, a shock S® followed by two centred simple waves, C?
and C®. Values of ¢4 are shown on certain rays and the other values may be obtained from figure 7
which shows the profiles of ¢,, @,, and ¢; when 7 = 4.

s
| g €= 0.4
< ﬂ‘ a N=1.0
\\\\,/‘ 8 -
= E P
< 3 =15
e g K, =10.0
o
et
E O
=w dimensionless distance, x
El (é) Ficure 6. Physical plane portrait of the solution to example 1.
s0
E I: < 1.2p~
o=4 &
(7 < 0 =]
A &=
Sz £
:'§ 208
T ]
oy S
5}
Q
2
© 04
2
0w
=1
(5]
& I ! ! ! L
T 0 2 4
dimensionless distance, x
Frcure 7. Concentration profiles at 7 = 4.0: example 1. —-—, Solute 4,; — - -—, solute 4,; , solute 4.

Example 2 (M = 3):

m 1 2 3

_ K, 5.0 10.0 15.0
< s \\‘,,‘W cfm 0 0 0
! e, 0.05 0.05 ' 0.05
< Wl 5.0 10.0 15.0
<>5 E W 3.387 7.050 12.563
e ﬁ This is the conventional saturation of a clean bed of adsorbent and three shocks divide the
= QO physical plane in the manner of figure 5(a). They can be seen in the lower part of figure 16
E 8 where 7 < 3 and the concentration profiles are shown in the first section of figure 17.
= Example3 (M = 3):
<Z
o4e) m 1 2 3
EE Kn 5.0 10.0 15.0

-,

Q<o d 0.05 0.05 0.05

A :
oz o 0 0 0
%‘é Wy 3.387 7.050 12.563
o Oy 5.0 10.0 15.0
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This is just the reverse of the previous example, representing the elution of the previously saturated

column, and the physical plane is as shown in figure 5 (). These two examples will be combined

later in discussing the development of the chromatogram, and this particular wave is identical
with the part of figure 16 which lies to the left of S®.

Example 4 (M = 4):

m 1 2 3 4
K, 5.0 10.0 12.5 20.0
d 0.04 0 0.02 0
o 0 0.06 0 0.04
oy 4.075 10.0 10.575 20.0
e, 5.0 5.40 12.5 15.434
12 7, /
Cg= 0 C(s)

© 0.02 ‘

183‘ 0.04 ’ €= 04

g 8 —

3 0.06 '/ N=10

—Z‘f 0.077 ' // K, =50

g @ //, S 0.02=C K,=10.0

§ L 5 // o0 Ky =12.5

= 7 .016 —
& / ZNrT Ky =200
/ 5@
| ! | |
0 2 4
dimensionless distance, x
Froure 8. Physical plane portrait of the solution to example 4.
0.08f- -

0

ool T T T T I
g T i
E |
0.1 [
|
J ]

0 1

dimensionless distance, x
Ficure 9. Concentration profiles at 7 = 10.0: example 4. ———, Solute 4,; —--—, solute 4,;

, solute 4g; —————— , solute A,.

In this case a bed saturated by two solutes is being eluted by a stream carrying two more strongly

adsorbed solutes. A system of two simple waves and two shocks is obtained as shown in figure 8.

Figure 9 shows the distribution of solutes both in the fluid and solid phases.
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8. STEPWISE DATA AND PATTERNS OF INTERACTION

The fundamental differential equation (1.14) is unchanged if one changes the origin of the
coordinate system arbitrarily. Furthermore, the Riemann invariants and the characteristic
parameters are determined in terms of concentrations only. It then follows that, given a jump
discontinuity along the 7- or x-axis, the image of solution in @(M) or (M) is independent of the
position in the physical plane. Consequently, the simple wave theory as well as the shock wave
theory can be equally well applied with the same homeomorphism (3.13) to any point in the
physical plane if a discontinuity is introduced at the point,

The present theory therefore finds its natural extension to a class of problems associated with
stepwise initial and/or entry data. The solution as a whole can be established by constructing
the centred wave solutions separately from each point of discontinuity. This is the characteristic
of hyperbolic systems. After a finite period of time, however, any two wave solutions centred at
two different, but adjacent, points of discontinuity will meet each other so that an overlapped
region appears in which the solution is influenced by two different sets of data at the same time.
Such a phenomenon is called an interaction between waves. Comparing the physical plane
portraits of simple waves and shock waves, one may classify all the probable situations as given
in the following theorem. Each item is so obvious from the inequalities (4.3), (5.8), (5.9), and
(5.10) that any further discussion seems superfluous.

TrEOREM 8.1: Patterns of intersection.
(1) Pattern I: two shock waves of the same kind necessarily interact with each other.
(i1) Pattern II: a simple wave and a shock wave of the same kind necessarily interact with
each other.
(iii) Pattern ITI: a (k)-wave (either simple or shock) necessarily interacts with an (m)-wave,
travelling behind it if m < £, or travelling ahead of it if m > £.

Corollary

(i) Two simple waves of the same kind do not interact with each other.
(11) A (k)-wave does not interact with an (m)-wave, travelling behind it if m > £, or travelling
ahead of itif m < £.

When two waves meet with each other, one may consider that a new Riemann’s problem is
generated. Furthermore, upon reflecting the image in (M) we can establish the basic principles
of interaction as follows:

(i) No penetration is allowed between waves of the same kind; i.e. a (k)-shock is simply
superposed upon another (£)-shock and a (k)-simple wave is continuously absorbed by a
(k)-shock.

(ii) When a (k)-wave interacts with an (m)-wave where m = £, it is clear that the image of the
interaction region in (M) lies completely on a plane on which only wgy and o, are variable. In
fact, the image is a rectangle, two adjacent sides of which are the images of waves before the inter-
action, while the other two represent the images after interaction (cf. figures 12 to 14). Hence,
a (k)-simple or shock wave transmits across another wave of different kind to generate the trans-
mitted (£)-simple or shock wave, respectively, on the other side. These arguments lead us to

TuEOREM 8.2: Basic principles of interaction.
(i) Superposition (pattern I).
Two shock waves of the same kind are instantly superposed when interacting.
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(ii) Absorption (pattern IT).

A simple wave is continuously absorbed by a shock wave of the same kind while interacting.
(iii) Transmission (pattern III).

Two waves of different kinds transmit across each other while interacting.

The absorption will result in a continuous decay of the shock since the simple wave is expan-
sive and thus the process of interaction may go on indefinitely. The process of transmission, on the
other hand, necessarily terminates after a finite period of time.

During the process of interaction, not only the corresponding shock line but also the charac-
teristics involved will be curved or refracted instantly because the state of concentrations varies.
This fact may be regarded as the accelerated motion of a shock or a disturbance. When a (£)-
simple wave transmits across an (m)-wave where m = k, the parameter w(, remains invariant
along each C® and thus it follows from equation (4.1) that

8O'orc))
= =—(1-¢€)wy/D? < 0. (8.1)
( aD D) *

TueoreM 8.3. A disturbance is accelerated (or decelerated) if D increases (or decreases) as
it propagates.

When a (k)-shock wave interacts with an (m)-wave, it is clear that Ay remains constant if
m = k while both vy and vy remain invariant if m < k. From equations (5.6) and (5.7), we have

30‘?@) (30 ?k))
B <0 —t < 0; 8.2
( oD Ay ’ oDr Ay ( )
30‘?k)) (30‘?,6))
0 0. 8.3
( oD W) =0 oD~ wbo < ( )

Consequently, we obtain

THEOREM 8.4. A shock is accelerated (or decelerated) if D! and/or Dt increases (or decreases)
asit propagates.

9. INTERACTION ANALYSIS

For a stepwise data problem, the wave propagation inevitably leads to interactions between
waves issuing from different points of discontinuity. In order to obtain the complete solution, it
is necessary to analyse each interaction that may be involved. In this section we shall be con-
cerned with separate analysis of each pattern, applications of which will be illustrated in the next

section. ) ‘
(a) Superposition and absorption

First, we shall consider the superposition of two shocks as shown in figure 10. When two shocks
of the same kind meet each other, the two are instantly superposed so that the intermediate state
P disappears and the new shock, being of the same kind, propagates with a constant speed given

by the reciprocal of o8 = €+ (1= €) Agy/DIDE. (9.1)

As an example of absorption we shall consider a (£)-simple wave overtaking a (k)-shock wave.
For a more general discussion we assume that the simple wave is not centred but based on dis-
tributed data given along the 7-axis asshownin figure 11. Since the (£)-Riemann invariants remain
constant everywhere, there exists a one-parameter representation of the whole solution. Dr
remaining constant, we may identify D'with D along the shock line which, in turn, corresponds
to the entry data along the 7-axis. We also assume that the entry condition is prescribed by an
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T @

L k) P (k)
®» e .3 © G

D'>D*> D"; A, = constant

Ficure 10. Superposition of two (k)-shocks (pattern I). (a) Physical plane portrait.
() Image in 2 (M): ===, image of a shock.

7| @
Q
Dy
(k)
(k) /
¢ y
v
R
x3,7°) D*
7(D) P
D*
0 i3

®) }:)_ ) _}‘{ r® q

—0 e w(k)

D* > D" > Dy; Ay = constant

443

Ficure 11. Absorption of a (k)-simple wave by a (k)-shock wave (pattern II). (a) Physical plane portrait.

(b) Image in 2(M): , image of a simple wave; === image of a shock.

31 Vol. 267. A.


http://rsta.royalsocietypublishing.org/

) §
C

/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

@ A

I §

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

444 HYUN-KU RHEE, R. ARIS AND N. R. AMUNDSON

invertible function so that the intercept # may be obtained in terms of D. Along the shock line,
therefore, we have two equations

—(D) = ogs, (9.2)
drs  drs [dxs
dws ~ db/dp = T (9.3)
which may be combined to yield
o do; d
(78) —ow) aﬁ—ﬁﬁxs = El% (9.4)

This is an ordinary differential equation which, if solved subject to the pertinent initial conditions
¥ =23 at D= D% (9.5)
will generate x5 as a function of D. 78 is then determined from equation (9.2). The set of % and 78
so obtained is the parametric representation of the curved shock line.
Substituting equations (4.2) and (5 6) with D! = D into equation (9.4) and rearranging, we
obtain .
(D - Dr) QDr xS - D 2%‘
dD D" (1-e)dy  dD
This can be reduced to the form
d ((D-Dr\? Dr dn
aol("57) ) = 654, -0 (50
since D # Dr. Now integrating from D = D*, we determine the solution as follows:

| o (L=DDRE D (D s o &
w03 D7) =1 (i ) + 52 (52 ) e 029 0P

or, by applying integration by parts,
1—Dr[D*\2 Dr D \2 D
Cop) o o) (=290 [ aw)av). )
Incidentally, we observe from equation (9.7) that 8 — 0o as D — DT and thus the interaction
will go on indefinitely unless Dy > Dr. This implies that a shock can never disappear.
If the simple wave is centred, we may put 7 = 0 without loss of generality to obtain
1 —Dr/D*\2
x8(D; Agy, D7) = x§ (T_—D]{/—D—)
Otherwise, we shall take the point (x3, 7§) as the new origin of the coordinate system to have x§ = 0
and thus DrDe

xS(D; A(Ic): Dr) = ( —6‘) A(k) (D Dr) {’”(D D— Drf 77 dD} (9'9)

If convenient, we may consider that the simple wave is based on data distributed along the
x-axis. We then replace equation (9.2) with the equation

78 = oy (x5 —£(D)), (9.10)

where £(D) is the inverse of the data function, and apply the same procedure (Rhee 1968).

In the case when a (k)-shock wave is overtaking a (k)-simple wave, everything remains un-
changed from the above except for the interchange of roles between D* and D'and between D *
and Dy. With these adjustments it is then possible to apply the same expressions, equations
(9.8) and (9.9).

x8(D; Agy, D7) = xﬁ(

(9.8)
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(b) Transmission

Here the two waves involved in the interaction are of different kinds and thus neither Riemann
invariants remain constant throughout the whole region. Of course, the state of concentrations
changes simultaneously on both sides of each wave. Despite such complexity, a rather complete
analysis can be performed by using the Riemann invariants and the characteristic parameters
judiciously. In the following we shall assume that a (k)-wave interacts with an (m)-wave where
m > k.

!

s(m)

=

w,
(k)‘ Wim)ys Wy
I rm | I
{“‘—"""’" =1 — %
I
]'v(k)= +> :r(k)
' i
i T TR T T s
0 (5) W)

Ficure 12. Transmission between two shock waves (pattern I1I). (a) Physical plane portrait.
(b) Image in Q(M): ===, image of a shock.
(1) Two shock waves

The interaction is an instantaneous process as shown in figure 12. After the interaction, a new
state IV appears between the two transmitted waves. Two shocks after transmitting across each
other propagate with constant speeds whose reciprocals are

0y = €+ (1—¢€) g/ D™ (9.11)
and Oimy = €+ (1—¢) v /DY, (9.12)
respectively.

31-2


http://rsta.royalsocietypublishing.org/

A

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

446 HYUN-KU RHEE, R. ARIS AND N. R. AMUNDSON

(ii) A simple wave and a shock wave

Again we shall assume that the simple wave is based on data distributed along the 7-axis so
that the intercepts of the C® characteristics are defined by a function #(D). As shown in figure 13,
the image of the interaction region occupies the rectangle I II IV III and the image of the (m)-
shock recedes from I III (1"™) to IT IV (I"™) as the interaction goes on. At one moment during the
interaction, for instance, distribution of solutes along the bed will be given by the path

(IT—(a) > (b) - I11).

Th
N : transmitting
s (k)-simple wave
C(k)/
E« o transmitted
£ (k)-simple wave
(k)
/ C (xg ) 765) A].\I;.,
7(D)
L -
0 x
(a)
W() al)(m)* Wiy
ARLCI
(k) —_—
@ _______
——————— r®
——————— —_—w
I F(m) m (k)%
° () “m)

Ficure 13. Transmission between a simple wave and a shock wave (pattern III). (a) Physical plane portrait.
(b) Image in (M) : ——, image of a simple wave; -~ ~=, image of a shock.

Since o, and A, remain constant on either side of the (m)-shock, we shall identify D! with D
and write

75— 9(D) = ol %, (9.13)
drs  drs [dxs 5
des — dD/ap = Olmy (9.14)
along the shock line, where Oty = €+ (1 —€) A/ D?, (9.15)
Tomy = €+ (1= €) 0/ D. (9.16)
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Combination of equations (9.13) and (9.14) yields

dxs  do} dy
(O-(m) U(k)) dD d.(Dk) X8 = @3 (9'17)

which is subject to the initial condition
x8=xj at D= DL (9.18)
Substituting equations (9.15) and (9.16) into equation (9.17), we obtain

drs 244, 0 D? dy
Al s B[ P(m) s
(D A(k)/w(m)) dD + D X8 (1 _ 6‘) w(:x;n) aD’

and this can be rewritten in the form

D — Ay [0y _ D— Aty |0 d
dD{( D ) = (1—¢) ok ab" (9.19)
The solution is then determined by direct integration:

D D'— A o,
itk (Dr *D"Z(f/‘w?i;f)

1 D ? 1 o P
+i=gyar (5=, (O~ Aelwi)n(0) = [ 2D db). (9.20
If the transmitting (k)-simple wave is centred, we can take # = 0 to obtain
D D' — Afyy [0y \2
%8(D; Ay, Ofmy) = %5 (51 mf))/_w(%) . (9.21)

Otherwise, we shall take the point (x,7§) as the new origin of the coordinate system to have x§ = 0
and hence

D2
xS(D; A}kb wzkm)) -

(1= €)ny (D — Ay 0(ny) :ﬂ( )=p= A(k)/w(m) PO

Y (D) dD} (9.22)

The interaction terminates when D = DY. Along a C® both gy and 4, remain constant
across the (m)-shock. Therefore, the transmitted (k)-simple wave is established by drawing straight
C®’s of slope oF
ofry = €+ (1—¢) ((—0:—;:: A{k,)/D2 for D' > D > DI, (9.23)

and the state of concentrations is given by

11— VKo

ot = N o (i=1,2,..,M). (9.24)

In the case when a (k)-shock wave is overtaking an (m)-simple wave, we shall identify D with
D to obtain the parametric description of the shock line from equation (9.20) in the form

x%8(D; Afmys Wiy« (9.25)

(iii) Two simple waves
The physical plane portrait and its image in £2(M) are shown in figure14. There appears a non-
simple wave region but it is clear that its image completely lies on a plane that is parallel to both

the wgy-axis and the w,-axis.
The solution in the non-simple wave region is determined by applying the mapping from the
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space 2(M) onto the physical plane. The correspondence is illustrated with 25 mesh points.
Along a C® both g, and 4, remain constant whereas, along a C®™, both v, and 4, remain
invariant. Therefore, the curved portions I IT and I III may be obtained by applying equation
(9.20) with appropriate adjustments; i.e.

; x8 (D; Alyy, 0fyy) for TII (9.26)
and x5 (D Afpy, wgy) for TIIL (9.27)
T4
/)
olm iy
I i
- Y, ‘C(k)/
o
23 9
1 y 6 fii1
I
7 (D) T I . -
0 D X
£(D) (@
“ T{m)* a{?‘m)
-t I
v — @l
Iy 3
Bl 2} (%)
o 71
S B | B
T ~ I (O3
o ® W(m)

Froure 14. Transmission between two simple waves (pattern IIT). (2) Physical plane portrait.
(6) Image in Q(M): , I'; ===, image of a simple wave.

From the image in 2(M), on the other hand, we can assign the values of wg, 0, Ay, and A,
to each of the mesh points, which in turn provide the values of oy and oy, at the same point:

[()]

o = €+ (1—¢) A*—'::;w(m) for  Wgp < Ogy < Oy, (9.28)
W,

O = €+ (1—€) 'Z%;iw(k) for oy < 0gy < Ok, (9.29)

The portion 17 of a C®, for example, may be approximated by a straight line of slope
o = (0l +0lh), (9:30)
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and the portion 47 of a C™ can be drawn likewise to yield the mesh point 7 at the intersection.
Iteration generates all the mesh points and thus the non-simple wave solution in the region
IITIVIII is established.

The transmitted (k)-simple wave is constructed by drawing straight C®’s from the points III,
«, f, v, and IV with the corresponding slope, respectively. The same holds for the transmitted
(m)-simple wave. As the number of mesh points is increased, an increasingly accurate solution can
be attained.

10. CHROMATOGRAPHIC CYGLE

In §7(d) the conventional processes of saturation and elution were discussed. Complete solu-
tions were also presented for A = 3 but the solution can be readily constructed for any A
greater than three.

It has been observed that separation of different solutes may be accomplished by applying the
above processes successively. Suppose a clean bed of adsorbent is first irrigated with a fluid
mixture containing M different solutes {4,}, laying down the sample to be developed into a
chromatogram. After a finite period of time, 7,, the inlet stream will be changed from the mixture
to the pure solvent so that the chromatogram starts to be eluted. Since the entry condition may be
regarded as stepwise data, there will naturally occur interactions between waves.

It is interesting to note that the image in @ (M) or 2(M) of the state along the bed at any in-
stant is a closed curve, the so-called chromatographic cycle, which deforms as time increases. De-
formation of the chromatographic cycle explains clearly how different solutes are separated.

We shall discuss the problem for M = 3 but the same procedure is certainly applicable for any
M greater than three. The image in @(3) is presented to show how the chromatographic cycle
deforms but, though this is a useful visualization, it is not necessary for the construction of a solu-
tion. This is important since picturing the image in @(M) or 2(M) would be difficult for M > 4.
By applying the result of the previous section, a complete analysis can be achieved, giving the
solution as shown in figure 15. In the remainder of this section, we shall discuss in detail how the
solution can be determined.

Until the moment 7 = 7, when the first interaction starts, the solution may be obtained from
§7(d) and the distribution of solutes is represented by the chromatographic cycle

O=-E->F->P->Q->R->0).

At 7 = 7 the (1)-simple wave starts to overtake the (3)-shock wave (transmissive interaction)
so that the state P disappears and the (3)-shock finds itsimage (P?i) receding toward FG. During
this interaction the (3)-shock line and the transmitted (1)-simple wave are given by equations
(9.21) and (9.23), respectively, with £ = 1 and m = 3. Meanwhile, the chromatographic cycle
becomes (O +E—»>F—>(a)—> @ - Q - R - O) for example. When the interaction is over at
T = 7,, the (3)-shock line separates the mixture containing 4, and A4, from the one containing 4,
and 4, from the left to the right.

At 7 = 7, (possibly 7, < 7,) the once-transmitted (1)-simple wave starts an interaction of
pattern IIT with the (2)-shock wave. The (2)-shock line and the twice-transmitted (1)-simple
wave are given by equations (9.22) and (9.23), respectively, with £ = 1 and m = 2. The chromato-
graphic cycle is now reduced to (O - E - F > G — @ —(e)—>R—0). When the interaction
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is over at T = 74, the (2)-shock line separates the mixture containing 4, only from the one con-
tainisg 4, alone from the left to the right; i.e. chromatograms of pure 4, and of pure 4, are
obtained.

The (2)-simple wave, on the ather hand, also starts an interaction of pattern III with the (3)-
shock wave at 7 = 75. The (3)-shock line and the transmitted (2)-simple wave are given by equa-
tions (9.21) and (9.23), respectively, with £ = 2 and m = 3. The chromatographic cycle now

‘Ag only

T : 0,
7?:" 0 A
/

0 ® x
Ficure 15. Separation of three solutes by successive operation of adsorption and desorption. (a) Concentration

® . . ®) . . .
space, @(8); — >~ image of (k)-simple wave; —==mp —= image of (k)-shock. (b) Physical plane portrait.

becomes (O - E— @ - @ -G -0 R ~0). When this interaction is over at 7 = 7., the (3)-

shock line separates the mixture containing 4, only from the one containing 4, alone from the
left to the right. Hence, the complete separation of three solutes, 4,, 4, and 4, is accomplished at

T=’T,),.
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Meanwhile, the twice-transmitted (1)-simple wave may start an interaction of pattern II
with the (1)-shock wave at 7 = 7,. As 7 increases, the once-transmitted (2)-simple wave also starts
an interaction of pattern II with the (2)-shock wave at 7 = 75 The corresponding shock line is
given by equation (9.9) with £ = 1 or £ = 2, respectively. The (3)-simple wave will also start
to overtake the (3)-shock wave at 7 = 7 and thisinteraction of pattern II is described by equation
(9.8). Each interaction of pattern II in the above implies the disappearance of the constant state
R, G, or E, respectively. Therefore the chromatographic cycle will be reduced to

O-E-0-G->0->R"-0),

where R, for example, denotes an intermediate point on OR. Further operation of the chroma-
tography will lead only to the lengthening of each chromatogram of a single solute which is not
desirable although it results in a more distinct separation.

Finally, the physical plane portrait is completed as shown in figure 15 (b) from which the dis-
tribution of solutes can be read at any moment.

€=04 K= 5.0 / ' 0
30— N=10  Kp=100 e 4
K3=15.0

¢3= 0

0.05

0.10 A
0.15 "
0.194

. /X

to

dimensionless time, 7

dimensionless distance, x

Freure 16. Physical plane portrait of solution to example 5.
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A numerical example will be presented bearing the same items as in §7 (¢):
Example 5 (M = 3):

m 1 2 3 remark
K, 5.0 10.0 15.0
e, 0 0 0
&, 0.05 0.05 0.05 for0 <7< 3.0
0 0 0 for 7 > 3.0
‘ Wy 5.0 10.0 15.0
< Oy 3.387 7.050 12.563 for0 <7< 3.0
| 5.0 10.0 15.0 forr > 3.0
—
<
> P 0.8~ - 0.8—
oln | ] T=30 4 T=55
A= ) - T -
E @) 0.4 1 0.4 i
©) I
mp L : A
1) i 1t I 1 H ! l 1
5CZ> 0 2 0 1
3=
-9
G
2<O0 =
oZ .
§'§ “: 04— =70
Sl 2L
[
g
g 1
§ 0 1 1
g
£ 04 :
§ ° 7=10.0
a L
[ 5]
g
B 0 =
0.4}
e T=15.0
_ . ! -
~y i -
. ~ 0 1 Lo | L1 st ]
<
Al
S E 0 T=30.0
m a i /_—_
! 1 ! ="
"E 8 0 1 2 3 4 5
— dimensionless distance, ¥

Ficure 17. Concentration profiles at successive times: example 5.
———, Solute 4,; — - -—, solute 4,; , solute 4.

This numerical example corresponds to the superposition and interaction of examples 2 and 3.
Figure 16 shows the physical plane with the interaction of the simple waves and the shock
waves. In figure 17 the distribution of solutes along the column is shown at various times. In the
first part of the figure (7 = 3.0) the sample has just been put on the column and the next two parts
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show the development of the chromatogram proceeding. By 7 = 10, 4, has been separated from
4, and 45. The chromatographic mixture of these two continues to develop (7 = 15) until they
also have separated. It is clear from this calculation that a dimensionless column length of about
4.7 is needed to completely separate these three solutes. Since the sample was put on during a
period of 7, = 3 we have
volume of sample _ eudt, 7, 3
volume of bed =~ z4 ~— x 4.7

That this ratio is so remarkably large is the result of the particular values of K; that were chosen,
but it does show that with strong absorption and very different values of K; the solutes can be
separated remarkably easily.

11. EXTENSION OF THEORY
(a) Radial chromatography

The use of annular cylindrical beds, fed through a central channel and drained at the periphery,
is of potential interest in cases where high throughput rates and wide but shallow beds are desired.
Radial flow geometry is also characteristic of one operating method used in paper chromato-
graphy. The theoretical analysis of this process was first made by Lapidus & Amundson (1950)
but was limited to the cases of linear isotherm and kinetic expressions.

It is noticed that the physical model deviates from the ideal column only by a geometrical
factor, i.e. non-uniform cross-sectional area. For such a system there exists a scheme to extend
the applicability of the present theory by a simple transformation of the space variable.

Consider a fixed bed of adsorbent with cross-sectional area A(z) varying in the direction of
flow. The system is otherwise an ideal column. The material balance for each component reads

2 {eu(z) A(2) e+ oA S =,

oc; o .
or Qaz +A(z)-(;}7—0 (t=1,2,..., M), (11.1)
where Q = eu(z) A(z) = constant volumetric flow rate. (11.2)

We shall now define the dimensionless variables as

2 Z
v [Tawatf[ awac (1.3
z
and r=Qt / f A(Q)de. (11.4)
0
Then the system (11.1) can be rewritten in the form
de;  Ofy .
o Tor =0 (t=12,..., M), (11.5)

which is identical to equation (1.1). It isalso clear that the jump relation and the compatibility
condition across a shock will be the same as equations (5.2) and (5.3). Consequently, all the
formulae developed can be applied directly if the initial and entry data are compatible.

For an annular cylindrical bed with purely radial flow, the initial and entry conditions are

at r=r1, ¢ =c
{ _ f} (11.6)
at =0, ¢;=c.]

32-2
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Here the radial position 7 corresponds to z. If we choose the radius of the central channel 7, as
the characteristic radius, it follows from equations (11.3) and (11.4) that

x = (r[ry)2—1 (11.7)
and 7 = Qt/mryd, (11.8)
where d denotes the depth of the bed. Furthermore, equation (11.6) is reduced to
t = 0 .= ¢%
fxm0 amay o
at 7=0, ¢ =¢;

that is, identical to equation (1.8).
For a spherical bed with spherical symmetry, one may put

x = (r[ry)®—1 (11.10)
and T = Qt[tnr} (11.11)

to reduce the mathematical model to the form of equations (11.5) and (11.9).

In conclusion, chromatographic processes associated with a fixed bed of non-uniform cross-
sectional area can be analysed equivalently by the present theory with the deformed transforma-
tion and normalization of the space variable given by equation (11.3).

(b) Non-isothermal chromatography

The temperature dependence of the adsorption isotherm has been observed experimentally
(see, for example, Shen & Smith 1968 ) and may be expressed for Langmuir isotherms by equa-
tion (2.2). It was also reported that such a dependence of the temperature produces effects that
are of importance in analysing the performance of chromatography (Amundson, Aris & Swanson
1965). In this paragraph we shall discuss briefly how heat effects can be treated mathematically
along with the present approach.

Consider a non-isothermal, adiabatic, and otherwise ideal column and assume that conduction
in the direction of flow is negligible compared with convection and that thermal equilibrium is
established between phases. Let Ct and Cs be the heat capacities per unit volume of the fluid and
solid phases, respectively. Then the energy balance may be formulated to give the equation

oT 0 Cs M (—AH;) on;
il _ —€)— —(1— 0 =
Q P + A(z2) 8t{€T+ (1 e)Cf T} (1—e) A(2) j§1 oA T 0 (11.12)
for the temperature T, where Ci, Cs and {— AH} are assumed constant. If we put
eyppn=T (11.13)
C M (—-AH;
and Nyre = -C—Z T—ji‘_]l ( - 1) nj, (11.14)

then the function f;;,, defined by equation (1.2) has the property

Jus, 1 > 0, (11.15)

which is consistent with f; for i = 1, 2, ..., M. If we further introduce equations (11.3) and (11.4),
equation (11.12) can be reduced to the form

%y11 Y
M1 M _ ),
ox or (11.16)
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With this simple form of energy balance we notice that the fundamental differential equation
(1.14) remains the same except that the subscript ¢ spans from one to A+ 1. Furthermore, the
same is true for the compatibility condition (5.3). The present approach therefore finds a natural
application to non-isothermal chromatography.

At the moment, however, no analytic scheme is promising because of the complicated tempera-
ture dependence given by equation (2.2). Another difficulty arises from the fact that the second
order derivatives of {n;} with respect to the temperature are not consistent in sign. In other words,
the system (1.1) plus equation (11.16) is not strictly nonlinear and thus the ‘entropy’ condition
may not be so simple as given by theorem 5.1. Since the image of a discontinuity may not coincide
with a I', one has to establish not only the solution to the fundamental differential equation but
also the one to the compatibility condition.

Although it is not possible to have an analytical approach, numerical analysis should be
straightforward for A/ < 2 within the framework of Reimann’s problem. Further discussions will
be presented along with numerical examples elsewhere.
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